Measuring Dust from Unpaved Roads and Its Impact on Crops & Livestock

Daba S. Gedafa, Ph.D., P.E. UND Civil Engineering

INTRODUCTION

- Unpaved roads are the largest source of particulate air pollution in the United States
- * Effects of dust from unpaved roads include:
 - Stunting plant growth due to the shading effect and clogging of the plant's pores
 - >Health problems such as hay fever and allergies
 - Reduction in visibility and causing driving hazards for drivers
 - Increasing particulate loading of lakes and streams after precipitation

PROBLEM STATEMENT

- Due to the increased traffic volumes related to energy sector in western North Dakota, dust along many unpaved roads is causing many complaints
 - Farmers and ranchers complain that dust from unpaved roads due to heavy trucks has stunted crops, damaged pasture, and caused allergic reactions in livestock
- There is a need to measure the amount of dust and its effect on crops & livestock

OBJECTIVES

- Literature review of the effect of dust from unpaved roads on crops and livestock
- Measure and compare dust from unpaved roads in five counties in North Dakota considering traffic, material type, and weather conditions
- Determine the effect of dust from unpaved roads on crops and livestock using survey

LITERATURE REVIEW

* Effect of dust on crops:

- Reduced photosynthesis
- Stomatal interference
- >Increased incidence of plant pests and disease
- Reduced spray effectiveness
- * Effect of dust from unpaved roads on livestock:
 - Dust pneumonia
 - ➢Pinkeye
 - Change in grazing patterns
 - Excessive teeth wear

TEST SITES AND SETUP

County	Interception	Counter	Locations of]	Post with Jars
County	Intersection	Location	East	West
Cass	163 rd Ave SE (Co. 11) and 15 th St SE (Co. 2), Grandin	South of Intersection	South side of 15	th St SE (Co. 2)
Grand Forks	17 th St NE (Co. 5) and 10 th St, Manvel	South of Intersection	South side of 10	th St
Mountrail	101 st Ave NW and 63 rd St NW, White Earth	North of Intersection	North side of 63	rd St NW
McKenzie	155 th Ave NW and 36 th St NW, Cartwright	South of Intersection	South side of 36 th St NW	North side of 36 th St NW
Williams	119 th Ave NW (Co. 15) and 60 th St NW (Co. 8), Ray	North of Intersection	North side of 60	th St NW (Co. 8)

Cass County: Co. 2 & Co. 11 in Grandin

Grand Forks County: Co. 5 & 10th St in Manvel

Mountrail County: 101st Ave NW & 63rd St NW in White Earth

Mountrail County: East of 101st Ave NW on 63rd St NW

McKenzie County: 155th Ave NW & 36th St NW in Cartwright

Williams County: Co. 8 & Co. 15 in Ray

Typical Metal Post with Mason Jars at Grand Forks site

Traffic Counter on Major Road at Grand Forks Site

DATA COLLECTIONS

0	July-A	ugust	August-S	eptember	Septembe	r-October	
County	Beginning	End	August-September Set Beginning End Beg $8-9-2014$ $9-11-2014$ $9-14$ $33 \exists vs$ 9 $9-14$ $8-6-2014$ $9-8-2014$ $9-8$ $8-6-2014$ $9-9-2014$ $9-8$ $8-7-2014$ $9-9-2014$ $9-9$ $8-8-2014$ $9-10-2014$ $9-10$ $8-8-2014$ $9-10-2014$ $9-10$ $33 \exists vs$ $9-10$ $9-10$	Beginning	End		
Cass	7-9-2014	8-9-2014	8-9-2014	9-11-2014	9-11-2014	10-8-2014	
	31 c	lays	33 0	lays	27 d	lays	
Grand	7-9-2014 8-6-2014		8-6-2014	9-8-2014	9-8-2014	10-8-2014	
Forks	31 days 7-9-2014 8-6-2014 28 days 7-2-2014 8-7-2014	29 0	lays	30 d	10-8-2014 lays		
Mountrail	7-2-2014	8-7-2014	8-7-2014	9-9-2014	9-9-2014	10-9-2014	
	36 d	lays	33 0	lays	30 d	lays	
McKenzie	7-3-2014	8-8-2014	8-8-2014	9-10-2014	9-10-2014	10-9-2014	
	36 c	lays	33 (lays	29 d	lays	
Williams	7-2-2014	8-7-2014	8-7-2014	9-9-2014	9-9-2014	10-9-2014	
	36 c	lays	33 0	lays	30 d	lays	

Material and Treatment Type Data

County	Material	PI	Treatment Type	Treatment
	Specification	(%)		Frequency
Cass	4-5 inches of	2-4	None	
	NDDOT Class 13			
Grand	3-4 inches of	2-4	None	
Forks	NDDOT Class 13			
Mountrail	NDDOT 5		Calcium chloride	Once a month
			(35%)	
McKenzie	NDDOT 5	0	Magnesium	Once during
			chloride (30%)	project duration
			Water	As needed
Williams	No response			

Mountrail County Site

McKenzie County Site

Williams County Site

DATA COLLECTIONS (Continued)

Weather Data:

Cass -Hector International Airport in Fargo

Grand Forks-Grand Forks International Airport

>Mountrail and Williams-Tioga Municipal Airport

- McKenzie-Watford City Municipal Airport and Sloulin Field International Airport in Williston
- Survey of the effect of dust from unpaved road on crop yield and livestock
 - ≻Online
 - ≻Over the phone

Response and Drop Rates for Each Question

		Respon	se Rate	Drop	Rate
Effect on	Question Number	Number	Percent	Number	Percent
	2	44	77.19	3	5.3
	3	39	68.42	10	17.5
	4	20	35.09		0.0
	5	17	29.82		0.0
Cuon Viold	6	20	35.09	1	1.8
Crop riela	7	15	26.32		0.0
	8	18	31.58		0.0
	9	19	33.33	2	3.5
	10	16	28.07		0.0
	11	16	28.07	4	7.0
	12	35	61.40	13	22.8
	13	13	22.81	3	5.3
	14	9	15.79	6	10.5
T investo als	15	5	8.77		0.0
LIVESLOCK	16	5	8.77		0.0
	17	3	5.26		0.0
	18	5	8.77	1	1.8
	19	4	7.02	1	1.8

Response Dates and Corresponding Number of Respondents

Month	Date	Number	Percent
	9	1	1.75
	16	2	3.51
	17	14	24.56
	18	7	12.28
Sontombor	19	3	5.26
September	21	2	3.51
	23	1	1.75
	24	1	1.75
	27	1	1.75
	29	1	1.75
	3	8	14.04
	4	6	10.53
October	5	4	7.02
	6	5	8.77
	16	1	1.75
	Total	57	100

DATA ANALYSIS

- Dust from each jars was run through Sieve No. 20 and then filtered using filter paper
- Dust retained by the filter was then oven dried
- * PH of the solution in each jar was determined
- Water chemistry was analyzed at Environmental Lab at Fargo Water Treatment Plant

RESULTS

Total Number of Vehicles and Average Daily Traffic (ADT)

County Cass GF	Direc	July-Aug	ast	August- Septembe	r	September	-October
County	-tion	Vehicles	ADT	Vehicles	ADT	Vehicles	ADT
	North	1063	34	824	27	1571	51
Cass	South	1219	39	2049	66	1181	38
	Total	2282	37	2873	46	2752	44
	North	3275	106	3339	108	3606	116
GF	South	4929	159	4525	146	5509	178
	Total	8204	132	7864	127	9115	147
	North	4130	133	5823	188	6702	216
Mountrail	South	4755	153	7378	238	5566	180
	Total	8885	143	13201	213	12268	198
	North	7226	233	15541	501	17329	559
McKenzie	South	11462	370	25676	828	28559	921
	Total	18688	301	41217	665	45888	740
	North	10030	324	10964	354	14020	452
Williams	South	9660	312	6951	224	10878	351
	Total	19690	318	17915	289	24898	402

Total Number of Vehicles at Each site

July-August Mean, Minimum, and Maximum Vehicle Speed

Ē

August-September Mean, Minimum, and Maximum Vehicle Speed

September-October Mean, Minimum, and Maximum Vehicle Speed

July-August Traffic Speed Frequency Distribution in Percent

Speed Range	C	ass	Grand	Forks	Mour	ntrail	McK	enzie	Will	iams
(mph)	Ν	S	Ν	S	Ν	S	Ν	S	Ν	S
0-5	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0
6-10	9.4	0.0	3.1	0.3	0.3	0.4	0.7	0.2	0.0	0.5
11-15	11.5	2.3	8.0	5.5	0.8	4.0	7.9	10.9	4.5	1.8
16-20	3.2	20.3	4.0	16.5	1.5	8.1	24.5	42.1	11.3	8.3
21-25	5.7	7.6	3.8	13.6	3.9	7.3	28.2	27.3	24.7	23.5
26-30	4.5	4.7	6.2	9.8	9.0	11.7	17.8	8.8	23.4	30.5
31-35	4.2	8.6	12.1	9.7	16.7	15.4	10.0	4.2	14.7	19.0
36-40	11.2	10.2	19.4	11.5	17.1	19.1	5.8	2.7	9.9	8.5
41-45	12.6	12.0	20.6	11.0	19.6	14.3	3.0	2.0	6.0	4.1
46-50	14.4	9.2	13.3	8.8	14.0	10.5	1.2	1.3	3.1	2.0
51-55	11.2	9.2	7.1	6.4	8.5	5.0	0.5	0.3	1.5	1.0
56-60	8.4	6.2	1.9	4.1	4.6	2.4	0.3	0.2	0.6	0.5
61-65	3.1	5.4	0.5	1.9	2.0	0.9	0.1	0.1	0.3	0.1
66-70	0.3	3.1	0.1	0.9	1.0	0.5	0.0	0.1	0.0	0.0
71-75	0.2	1.0	0.1	0.0	0.3	0.3	0.0	0.0	0.0	0.0
76-80	0.0	0.1	0.0	0.0	0.3	0.0	0.0	0.0	0.0	0.0
81-85	0.0	0.0	0.1	0.0	0.2	0.0	0.0	0.0	0.0	0.0
86-90	0.0	0.1	0.0	0.0	0.1	0.1	0.0	0.0	0.0	0.0
Total	100	100	100	100	100	100	100	100	100	100

August-September Traffic Speed Frequency Distribution in Percent

Speed Range	C	ass	Grand	Forks	Mour	ntrail	McK	enzie	Will	iams
(mph)	Ν	S	Ν	S	Ν	S	Ν	S	Ν	S
0-5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
6-10	0.9	2.1	0.9	2.1	0.2	0.4	0.2	0.1	0.3	0.4
11-15	1.9	35.7	1.9	35.7	1.6	2.0	2.7	5.7	5.7	3.9
16-20	1.6	8.7	1.6	8.7	3.5	8.9	17.1	40.2	16.7	10.1
21-25	2.8	3.5	2.8	3.5	9.2	21.9	33.1	33.2	29.8	21.5
26-30	5.3	4.7	5.3	4.7	14.6	20.5	24.6	13.6	18.3	20.8
31-35	8.2	4.9	8.2	4.9	22.0	15.1	13.5	3.2	9.8	16.1
36-40	11.0	5.8	11.0	5.8	16.7	13.5	5.2	1.6	7.5	12.9
41-45	17.9	6.8	17.9	6.8	11.6	8.8	2.2	1.2	5.7	7.4
46-50	18.2	8.2	18.2	8.2	10.8	5.1	1.0	0.7	3.5	3.8
51-55	19.7	6.6	19.7	6.6	5.0	2.5	0.4	0.3	2.0	2.2
56-60	8.5	5.8	8.5	5.8	2.5	0.9	0.1	0.1	0.5	0.7
61-65	3.1	4.9	3.1	4.9	1.3	0.3	0.1	0.0	0.2	0.2
66-70	0.6	2.0	0.6	2.0	0.6	0.2	0.0	0.0	0.0	0.1
71-75	0.3	0.1	0.3	0.1	0.3	0.0	0.0	0.0	0.0	0.0
76-80	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0
Total	100	100	100	100	100	100	100	100	100	100

Sep.-October Traffic Speed Frequency Distribution in Percent

			Gra	nd						
Speed Range	C	ass	Foi	ks	Mour	ntrail	McK	enzie	Will	iams
(mph)	Ν	S	Ν	S	Ν	S	Ν	S	Ν	S
0-5	0.2	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
6-10	3.6	0.0	1.4	0.4	0.0	0.1	0.2	0.1	0.0	0.1
11-15	20.7	0.4	9.2	11.0	0.6	0.5	2.8	12.3	1.1	2.8
16-20	13.0	4.2	8.4	7.8	3.5	2.1	18.7	50.0	15.3	11.1
21-25	3.1	3.1	3.9	6.1	12.2	4.4	36.9	24.8	30.8	20.4
26-30	2.5	5.3	5.5	12.7	15.6	9.7	23.6	7.4	20.7	22.6
31-35	3.8	8.1	9.9	11.3	14.8	12.4	10.9	2.7	12.4	19.5
36-40	7.6	10.7	19.7	13.1	18.7	19.9	4.2	1.1	8.6	13.0
41-45	12.2	17.1	20.2	10.9	15.4	17.8	1.5	0.8	5.7	6.6
46-50	10.9	15.8	13.8	10.4	10.6	15.6	0.7	0.4	3.3	2.2
51-55	11.5	14.7	5.8	8.6	5.4	8.9	0.2	0.2	1.3	1.0
56-60	5.6	9.8	1.5	4.6	1.7	5.0	0.1	0.1	0.6	0.6
61-65	3.5	5.9	0.3	2.0	1.1	2.3	0.0	0.1	0.2	0.1
66-70	1.6	3.9	0.1	0.8	0.1	0.8	0.0	0.0	0.0	0.0
71-75	0.2	0.9	0.0	0.2	0.0	0.5	0.0	0.0	0.0	0.0
76-80	0.2	0.2	0.0	0.1	0.0	0.2	0.0	0.0	0.0	0.0
Total	100	100	100	100	100	100	100	100	100	100

Weather Effect: Precipitation

Month	Cass	Grand Forks	Mountrail	McKenzie	Williams
July-August	1.59	2.94	2.06	0.74	2.06
August-September	3.92	3.22	2.18	1.38	2.18
September-October	0.28	1.29	0.38	0.67	0.38
Total Precipitation	5.79	7.45	4.62	2.78	4.62

Material Effect Cass County Gradation Curve

McKenzie County Gradation Curve

Dust Results

Average Dust per Post (grams) in July-August

Location	Ht			Ea	ist					W	est		
Location	(ft)	30	60	120	240	480	Tot	30	60	120	240	480	Tot
	2	0.25	0.11	0.14	0.15	0.13	0.78	0.20	0.21	0.21	0.21	0.29	1.12
Coor	3	0.15	0.10	0.10	0.09	0.12	0.56	0.15	0.13	0.18	0.17	0.20	0.83
Cass	4	0.09	0.07	0.02	0.08	0.10	0.36	0.06	0.12	0.04	0.08	0.08	0.38
	М	0.16	0.09	0.09	0.11	0.12	0.57	0.14	0.15	0.14	0.15	0.19	0.78
	2	0.99	0.28	0.10	0.14	0.23	1.74	0.09	0.07	0.09	0.11	0.18	0.53
Grand	3	0.41	0.11	0.06	0.09	0.20	0.86	0.09	0.06	0.03	0.01		0.19
Forks	4	0.21	0.09	0.06	0.08	0.09	0.52	0.07	0.02	0.02		0.16	0.27
	М	0.54	0.16	0.07	0.10	0.17	1.04	0.08	0.05	0.05	0.06	0.17	0.33
	2	0.13	0.13	0.08	0.04	0.03	0.40	0.14	0.12	0.08	0.05		0.39
Mountroil	3	0.09	0.09	0.05	0.03	0.02	0.28	0.13	0.05	0.03	0.03		0.25
Wiounti an	4	0.07	0.05	0.02	0.01	0.01	0.16	0.09	0.04		0.02		0.15
	М	0.10	0.09	0.05	0.03	0.02	0.28	0.12	0.07	0.06	0.04		0.26
	2	0.53	0.51	0.72	0.43	1.23	3.43	1.20		3.78	2.75	3.29	11.01
McKonzio	3	0.34	0.40	0.40	0.28	0.74	2.15	0.59			1.20	1.21	3.00
WICKENZIE	4	0.20	0.21	0.26	0.18		0.84	0.43		1.04	0.87	0.64	2.98
	М	0.36	0.37	0.46	0.30	0.99	2.14	0.74		2.41	1.60	1.71	5.66
	2	1.34	0.90	0.95	0.98	0.65	4.82	1.63	0.96	1.46	1.64	1.76	7.43
Williams	3	1.05	0.81	0.65	0.90	0.52	3.93	1.21	0.80	0.96	1.09	1.13	5.18
	4	0.91	0.60	0.50	0.54	0.40	2.95	1.09	0.67	0.72	0.68	0.74	3.91
	Μ	1.10	0.77	0.70	0.81	0.52	3.90	1.31	0.81	1.05	1.13	1.21	5.51

Average Dust per Post in August-September

Average Dust per Post (grams) in August-September

Location	Ht			Ea	ist					W	est		
Location	(ft)	30	60	120	240	480	Tot	30	60	120	240	480	Tot
	2	0.25	0.11	0.14	0.15	0.13	0.78	0.20	0.21	0.21	0.21	0.29	1.12
Coss	3	0.15	0.10	0.10	0.09	0.12	0.56	0.15	0.13	0.18	0.17	0.20	0.83
Cass	4	0.09	0.07	0.02	0.08	0.10	0.36	0.06	0.12	0.04	0.08	0.08	0.38
	М	0.16	0.09	0.09	0.11	0.12	0.57	0.14	0.15	0.14	0.15	0.19	0.78
	2	0.99	0.28	0.10	0.14	0.23	1.74	0.09	0.07	0.09	0.11	0.18	0.53
Grand	3	0.41	0.11	0.06	0.09	0.20	0.86	0.09	0.06	0.03	0.01		0.19
Forks	4	0.21	0.09	0.06	0.08	0.09	0.52	0.07	0.02	0.02		0.16	0.27
	М	0.54	0.16	0.07	0.10	0.17	1.04	0.08	0.05	0.05	0.06	0.17	0.33
	2	0.13	0.13	0.08	0.04	0.03	0.40	0.14	0.12	0.08	0.05		0.39
Mountroil	3	0.09	0.09	0.05	0.03	0.02	0.28	0.13	0.05	0.03	0.03		0.25
wiountran	4	0.07	0.05	0.02	0.01	0.01	0.16	0.09	0.04		0.02		0.15
	М	0.10	0.09	0.05	0.03	0.02	0.28	0.12	0.07	0.06	0.04		0.26
	2	0.53	0.51	0.72	0.43	1.23	3.43	1.20		3.78	2.75	3.29	11.01
MaVanzia	3	0.34	0.40	0.40	0.28	0.74	2.15	0.59			1.20	1.21	3.00
WICKEIIZIE	4	0.20	0.21	0.26	0.18		0.84	0.43		1.04	0.87	0.64	2.98
	М	0.36	0.37	0.46	0.30	0.99	2.14	0.74		2.41	1.60	1.71	5.66
	2	1.34	0.90	0.95	0.98	0.65	4.82	1.63	0.96	1.46	1.64	1.76	7.43
Williama	3	1.05	0.81	0.65	0.90	0.52	3.93	1.21	0.80	0.96	1.09	1.13	5.18
vviinamis	4	0.91	0.60	0.50	0.54	0.40	2.95	1.09	0.67	0.72	0.68	0.74	3.91
	Μ	1.10	0.77	0.70	0.81	0.52	3.90	1.31	0.81	1.05	1.13	1.21	5.51

3.0 Average Dust per Post (grams) in Sep.-October

Average Dust per Post (grams) in Sep.-October

Location	Ht	East							West				
Location	(ft)	30	60	120	240	480	Tot	30	60	120	240	480	Tot
	2	0.20	0.15	0.11		0.36	0.82	0.22	0.20	0.22	0.13	0.08	0.84
Coss	3	0.13	0.08	0.10	0.09	0.33	0.73	0.14	0.14	0.14	0.08	0.05	0.54
Cass	4	0.11			0.08	0.22	0.41	0.02	0.13	0.11	0.06	0.03	0.36
	Μ	0.15	0.11	0.11	0.09	0.30	0.65	0.13	0.15	0.16	0.09	0.05	0.58
	2	0.92	0.60	0.25	0.36	0.26	2.39	0.41	0.35	0.54	0.32	0.40	2.03
Grand	3	0.55	0.37	0.21	0.32	0.21	1.65	0.24	0.18	0.42	0.23	0.21	1.27
Forks	4	0.36	0.31	0.08	0.30	0.11	1.17	0.20	0.16	0.20	0.12	0.10	0.78
	Μ	0.61	0.43	0.18	0.33	0.19	1.74	0.28	0.23	0.39	0.22	0.24	1.36
	2	0.19	0.17	0.12	0.11	0.09	0.67	0.18	0.16	0.10	0.09		0.52
Manatuail	3	0.12	0.08	0.07	0.06	0.05	0.39	0.12	0.10	0.08	0.07		0.38
Mountrail	4	0.08	0.03	0.04	0.03	0.02	0.21	0.11	0.05	0.03	0.03		0.23
	Μ	0.13	0.09	0.08	0.07	0.05	0.42	0.14	0.10	0.07	0.06		0.38
	2	0.89	0.81	1.71	0.69	1.42	5.53	1.43	1.49	2.15	2.15	1.58	8.80
MaVarria	3	0.71	0.69	0.80	0.53	0.98	3.72	0.74	1.10	1.19	0.84	0.62	4.49
wickenzie	4	0.57	0.32	0.48	0.28	0.47	2.12	0.49	0.41	0.76	0.43	0.47	2.55
	Μ	0.72	0.61	1.00	0.50	0.96	3.79	0.89	1.00	1.36	1.14	0.89	5.28
	2	2.15	1.45	1.79	2.87	1.54	9.80	2.27	1.77	2.64	4.06	3.11	13.85
	3	1.67	1.01	1.14	1.31	1.24	6.38	1.87	1.58	1.74	2.19	2.55	9.93
vv illiams	4	1.37	0.84	0.71	0.93	0.70	4.56	1.23	1.16	1.10	1.27	1.40	6.15
	Μ	1.73	1.10	1.21	1.71	1.16	6.91	1.79	1.50	1.82	2.51	2.35	9.98

Average of Total Dust at Each Site from July-October

Poor Visibility due to Dust North of Williams County Site

Effect of Dust from Unpaved Road on Leaf Temperature

		East					West				
County		30	60	120	240	480	30	60	120	240	480
Cass	Total Tem. (°F)	0.51 53	0.43 44	0.40 41	0.53 55	0.72 75	0.42 43	0.43 44	0.51 53	0.39 41	0.44 46
Grand Forks	Total	1.40 145	0.68	0.34	0.51	0.53	0.52	0.49	0.67	0.54	0.56
Mountrail	Total	0.48	0.31	0.24 24	0.19	0.14	0.37	0.28	0.22	0.18	50
McKenzie	Total Tem. (°F)	1.47 153	0.98 102	2.05 213	1.16 120	2.79 290	2.42 252	1.00 104	5.65 586	3.93 408	3.41 354
Williams	Total	3.82 453	2.86	3.68	3.85 456	2.57 304	4.79	3.67 434	4.25	5.51	5.48 649

Average PH from July-October

Country	Height	East					West				
County	(ft)	30	60	120	240	480	30	60	120	240	480
	JulAug.	10.40	10.25	10.32	10.27	10.37	10.25	10.58	10.24	10.24	9.55
Cass	AugSep.	10.35	10.39	10.44	10.38	10.43	10.43	10.41	10.40	10.51	10.39
	SepOct.	10.62	10.64	10.45	10.46	10.40	10.24	10.36	10.38	10.54	10.21
Carriel	JulAug.	10.37	10.30	10.25	10.12	10.42	9.10	9.29	8.76	9.26	8.69
Grand Forks	AugSep.	10.14	10.36	10.33	10.08	10.09	10.29	10.12	10.10	10.21	10.18
	SepOct.	10.61	10.63	10.64	10.64	10.72	10.55	10.59	10.57	10.66	10.60
Т	JulAug.	10.28	10.47	10.22	10.57	8.31	10.65	10.70	7.83	10.57	
Mount- rail	AugSep.	10.17	10.14	10.13	10.08	10.16	10.30	10.09	10.18	10.15	
1 411	SepOct.	10.62	10.55	10.61	10.56	10.57	10.47	10.50	10.53	10.55	
N <i>K</i> T <i>T</i>	JulAug.	10.44	10.22	10.32	10.33	10.50	10.37		10.64	9.75	9.60
MCK- enzie	AugSep.	9.24		9.83	9.05	9.81	10.17		10.15	10.30	10.26
	SepOct.	10.53	10.50	10.59	10.61	10.62	10.40	10.41	10.38	10.61	10.40
	JulAug.	10.39	10.43	10.36	10.12	10.37	10.41	10.58	10.72	10.64	10.63
Williams	AugSep.	10.26	10.41	10.34	10.11	10.16	10.25	10.33	10.48	10.28	10.39
	SepOct.	10.46	10.24	10.59	10.51	10.51	10.17	10.28	10.24	10.39	10.44

Water Chemistry

Analyte	Cass	Grand	Mountrail	McKenzie	Williams
		Forks			
Conductivity (mS/cm)	27	92	64.5	32.85	20.8
PH	10.2	10.4	10.4	10.4	10.2
TDS (mg/L)	26,600	80,600	48,800	21,240	18,240
Turbidity (NTU)	4.13	4.10	6.49	7.0	10.2
Chloride (mg/L)	10,200	29,100	20,100	9,620	8,010
Fluoride (mg/L)	< 0.20	0.50	0.30	< 0.20	< 0.20
Sulfate (mg/L)	15.7	38.3	24.5	19.5	15.4
Calcium (mg/L)	3.14	3.69	3.45	6.05	6.54
Iron (mg/L)	0.32	0.358	0.887	0.435	1.156
Magnesium (mg/L)	1.53	<1.0	<1.0	<1.0	<1.0
Manganese (mg/L)	0.06	< 0.02	< 0.02	< 0.02	0.037
Potassium(mg/L)	12.7	40.0	23.4	12.5	16.8
Sodium(mg/L)	8,520	24,900	16,000	7,080	6,080
TSS (mg/L)	15.4	22.0	30.6	45.3	35.0

Effect of Dust on Crop Yield

Effect of Dust on Crop Yield

Do you own a farmland along unpaved road (s)?

Did you notice the effect of dust from unpaved road (s) on crop yield?

#	An sw er	Bar	Response	%
1	Yes		29	74.36%
2	No		10	25.64%
	Total		39	100.00%

- What kinds of crops do you plant?
 Wheat is the most widely planted crop
- Can you please rank the effect of dust from unpaved road
 (s) on the different kinds of crops?
 Wheat is affected the most
- Do you use combine with yield monitor to harvest?

- Can you please provide percent reduction in yield at different distances from unpaved road (s)?
 - First two passes (40 foot headers) around 50 to 70 % loss compared to the opposite side of the field, next two passes 20 to 35 % yield loss, the next two none to 10% loss
 Other responses: 5-60% reduction in yield
- At what distance from the center of unpaved road (s) do you think that the dust from unpaved road (s) does not have significant effect on crop yield?
 Responses vary from 80 ft-1/2 mile

The effect of dust from unpaved road (s) on crop yield has:

#	Answer	Bar	Response	%
1	Reduced		10	52.63%
2	Been the same		3	15.79%
3	Increased		4	21.05%
4	other		2	10.53%
	Total		19	100.00%

- If the effect of dust from unpaved road (s) on crop yield has reduced or increased, can you specify the year (s) when it happened?
 - Responses vary from 2007-2014
 - Reduction in wet years

- Any suggestions to reduce the effect of dust from unpaved roads on crop yield if there is any?
 - >Apply suppressants frequently depending on weather and traffic conditions
 - >Pave the sections with heavy traffic and maintain them
 - Reduce speed limits and enforce them

Effect of Dust on Livestock

Effect of Dust on Livestock

Do you own any livestock?

#	An sw er	Bar	Response	%
1	Yes		14	40.00%
2	No		21	60.00%
	Total		35	100.00%

Do you feed your livestock the grass/hays from grassland along unpaved road (s)?

#	Answer	Bar	Response	%
1	Yes	2	8	61.54%
2	No		5	38.46%
	Total		13	100.00%

Effect of Dust on Livestock (Continued)

- What kinds of livestock do you own?
 Cattle and horses
- What are the effect (s) of dust from unpaved road (s) on your livestock?
 - ≻dust pneumonia
 - ➢Pinkeye
 - Change in grazing patterns

Effect of Dust on Livestock (Continued)

- Can you rank the effect of dust from unpaved road (s) on your livestock from highest to lowest if you own more than one kinds of livestock?
 - ➢Worse on calves and horses
 - ≻Increased vet cost

* The effect of dust from unpaved road (s) on livestock has:

#	Answer	Bar	Response	%
1	Reduced		0	0.00%
2	Been the same		1	20.00%
3	Increased		2	40.00%
4	Other		2	40.00%
	Total		5	100.00%

CONCLUSIONS

 McKenzie and Williams county sites have had very high average daily traffic

There has been a significant increase in the number of vehicles at McKenzie county site

* Some of the people drive at very high speed

 Williams and Mountrail county site had the highest and lowest amount of dust in general

Williams and Cass county sites were located at the intersection of two county roads

CONCLUSIONS (Continued)

- There has been a significant increase in the amount of dust at Grand Forks in September-October as compared to the previous two months
- As the height of Mason jar increases, there is a decrease in the amount of dust from unpaved roads
- As the distance from the center of major unpaved road increases, there is a decrease in the amount of dust

CONCLUSIONS (Continued)

* PH values of the dust from unpaved roads are very high

The effect of dust from unpaved road (s) on crop yield could be significant

>up to 70% reduction in yield close to unpaved road

The effect of dust from unpaved road (s) on livestock could be significant depending on the kinds of livestock, the age of livestock, and the amount of dust
Calves and horses are affected the most

The quality of life of residents close to unpaved road (s)
 is highly affected

RECOMMENDATIONS

- Determine the amount of money lost due to the effect of dust from unpaved roads on crop yield and livestock
- Conduct detailed economic analysis to determine the cost-effectiveness of using dust suppressants regularly on highly travelled unpaved roads (ADT more than 500) as compared to paving them
- Enforce speed limits on unpaved roads in order to reduce the amount of dust and for the safety of the public
- Investigate the effect of NDDOT's spring load restriction policy on county and township roads

ACKNOWLEDGEMENTS

 North Dakota Association of Oil and Gas Producing Counties for funding this project

County Highway Engineers

* Ron Wiederholt from NDSU Extension Services, Farmers and Ranchers Associations for emailing online surveys to their members

Dale Heglund from NDLTAP

Thank you!

Questions, Comments and Suggestions?

Contact:

Daba S. Gedafa, Ph.D., P.E.

University of North Dakota

E-mail: daba.gedafa@engr.und.edu

Office Phone: 701-777-3976

